
A CONTRIBUTION TO THE PROBLEM OF CORRECT
DESCRIPTION OF ELECTROMAGNETIC WAVES
IN LAYERED MEDIA WITH MAGNETIC PROPERTIES
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To model electromagnetic phenomena in layered media when we have a spatial charge distribution and an
electric double layer at the boundary of contact it is proposed that the equation of telegraphy for the vector
of the electric field strength and 12 conditions at the boundary of contact which reflect the laws of conserva-
tion of charge and energy without separating explicitly the surface charge for the multidimensional case be
employed. An example of solution of the problem of propagation of a plane monochromatic wave for two
media with dissimilar electrophysical properties is given for the one-dimensional case.

Investigation of the interaction of electric and thermal fields with allowance for mass transfer and contact phe-
nomena is a complicated and pressing problem of the theory and practice of various fields of natural science and tech-
nology. Two approaches are applicable to its solution.

We can consider in detail the action of an electric field on electric charges that exist independently or form
part of the molecules or atoms of a medium. However the computations required in this case are cumbersome since it
is necessary to take account of the action, on each charge, not only of the incident wave but also of the secondary
waves from all the remaining charges [1, p. 302].

The other way of solving the problem relies on phenomenological electrodynamics whose propositions provide
the basis for the investigations of the present work. Let us consider the interface S of two media with dissimilar elec-
trophysical properties. The surface charges σ and the surface current i (vector lying in the tangential plane to the in-
terface S) occur on the contact under the action of the external electric field. The vectors of the magnetic field
strength H and of the magnetic induction B and the vectors of the electric field E and of the electric displacement D
are finite and continuous on both sides of the interface but they can experience a discontinuity of the first kind at the
phase boundary.

In considering the electric field interacting with a material medium, we use the Maxwell equations [1, p. 299]

∂D
∂t

 + Iq = ∇  × H ,   ∇ D = ρ ; (1)

− 
∂B
∂t

 = ∇  × E ,   ∇ B = 0 . (2)

At the interface S, the system of equations is supplemented with the conditions

Dn1 − Dn2 = σ , (3)

Eτ1 − Eτ2 = 0 , (4)

Bn1 − Bn2 = 0 , (5)
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Hτ1 − Hτ2 = iτ . (6)

We note that by the subscript τ one can mean any direction tangential to the discontinuity surface.
The surface charge σ is formed owing to the spontaneous redistribution of ions or electrons at the boundary

of a layered medium for equalization of Fermi energy levels [2, p. 425]. An electric double layer results, and we have
a spatial electric-charge distribution near the boundary of contact of dissimilar substances. The structure of the electric
double layer is affected by nonstationary thermal and diffusion processes, which makes the problem of modeling of
electric fields even more complicated.

Various reasons can be responsible for the charge distribution. For example, in the case of electrolyte–metal
contact it is attributed to the ions going from the electrode into the solution and to the specific adsorption of ions of
one sign on the electrode surface and to the orientation of polar molecules near the electrode surface [3, p. 39]. Other
reasons are responsible for the structure of the electric double layer in contact of two solid semiconductors or of a di-
electric and a semiconductor, and this structure has its own features [4, p. 490; 5].

We note that the structure of the electric double layer substantially affects electrokinetic phenomena, the rate
of electrochemical processes, and the stability of colloidal systems.

For the above reasons the electric double layer leads to fundamental difficulties in modeling the electric fields
in a layered medium. Construction of the equivalent circuits for taking into account the electric double layer through
introduction of a surface capacitance [5] (that is found experimentally) is worthwhile only for the range of conditions
under which it has been determined.

This work seeks to construct a physicomathematical model of interaction of nonstationary electric fields in a
layered medium without separating explicitly the surface charge. Contacting media are considered to be homogeneous.

Having eliminated the magnetic field strength from system (1)–(2), we obtain the known equation for the
electric field strength:
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∂t
 = 

1

µ
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In Cartesian coordinates, it will have the form
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(8)

At the interface, a relation holds that reflects the law of conservation of electric charge [6, p. 420]:

div i + Iqx1
 − Iqx2

 = − 
∂σ
∂t

 , (9)

where i = iy⋅j + iz⋅h is the surface-current density [6, p. 180]; the coordinate x is directed along the normal to the
boundary.

Conditions (3)–(6) will be written in a Cartesian coordinate system:

Dx1 − Dx2 = σ , (10)
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Ey1 − Ey2 = 0 , (11)

Ez1 − Ez2 = 0 , (12)

Bx1 − Bx2 = 0 , (13)

Hy1 − Hy2 = iy , (14)

Hz1 − Hz2 = iz . (15)

By the density iy and iz of the surface current we mean the quantity of electricity traversing, per unit time, a unit
length of the segment which is located perpendicularly to the direction of the current on the surface carrying it. The
surface density of displacement currents is always equal to zero if ∂D/∂t has a finite value [6, p. 344]; therefore, the
surface current cannot cause the surface charge to change. The value of the surface current is low for common mate-
rials by virtue of the small cross section; however, it can turn out to be substantial for superconductors. In what fol-
lows, we will disregard the surface current.

Indeed, no surface electric currents exist under actual conditions when the electrical conductivities of media
are finite. The presence of them would imply that a current of finite value traverses an infinitely small cross section
of the conductor. In this case an infinitely high power is consumed in the volume of finite dimensions. The possibility
of disregarding surface currents for media with a finite conductivity is substantiated in greater detail in [7, p. 227].

Differentiating expression (10) with respect to time and taking into account relation (9), at the boundary of
the media we obtain the condition of equality of the normal components of the total current:

Iqx1 + 
∂Dx1

∂t
 = Iqx2 + 

∂Dx2

∂t
 . (16)

This condition enables us to eliminate the surface density of the charge of the electric double layer from consideration.
Let D = εε0E and Iq = λE. We introduce the notation [f] x=ξ = f1 x=ξ+0 − f2 x=ξ−0 for the arbitrary function f. Then
expression (16) will take the form





λEx + εε0 
∂Ex

∂t







 x=ξ

 = 0 . (16a)

Next, acting on the left-hand and right-hand sides of Eq. (1) by the operator div and taking into account that
divrot H = 0, we obtain

∂
∂t

 (div D) + div (Iq) = 0 .

Consequently, the relations reflecting the law of conservation of electric charge hold at the boundary of media 1 and
2 in the Cartesian coordinate system:
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We believe that Ex is a continuous function of y and z at the boundary of the media. Then, upon differentiating (16a)
with respect to y and z, we have
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Let us differentiate conditions (13)–(15) with respect to time for the magnetic induction and the magnetic field
strength. Having set B = µµ0H, we obtain (without taking account of the influence of surface currents)
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Having taken (2) into account, we express (21) in terms of the projections of the rotation of the electric field:
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Here (22) is the normal projection of the rotation, (23) is the tangential projection of the rotation of the electric field
in y, and (24) is the projection of the rotation in z.

Assuming that Ey and Ez are continuous differentiable functions of the coordinates y and z, from conditions
(11) and (12) we obtain
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To solve the complete system of equations (8) in the general case we must determine 12 boundary conditions
at the boundary of the adjacent media:

a) the functions Ex, Ey, and Ez are determined by conditions (11), (12), and (16a);
b) the derivatives ∂Ex

 ⁄ ∂x, ∂Ey
 ⁄ ∂y, and ∂Ez

 ⁄ ∂z are found from conditions (17) and (18) as direct consequences
of the laws of conservation of charge;

c) the quantities ∂Ex
 ⁄ ∂y and ∂Ey

 ⁄ ∂z are calculated from relations (19) and (20) with allowance for the conti-
nuity of the normal component of the total current (16a) in the coordinates x, y, and z at the boundary;
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d) the values of ∂Ey
 ⁄ ∂y, ∂Ey

 ⁄ ∂z, ∂Ez
 ⁄ ∂y, and ∂Ez

 ⁄ ∂z are determined by conditions (25) and (26) as a conse-
quence of the continuity of the tangential components of the electric field in y and z;

e) the derivatives ∂Ex
 ⁄ ∂z, ∂Ex

 ⁄ ∂y, ∂Ey
 ⁄ ∂x, and ∂Ez

 ⁄ ∂y are found from conditions (23) and (24) as a conse-
quence of the equality of the tangential components of the rotation of the electric field in y and z.

We note that condition (16a) has been employed in [8] in numerical modeling of pulsed electrochemical proc-
esses. For the normal component of the rotation of the electric field relation (22) is a linear combination of conditions
(25) and (26); therefore, rotx E = 0. In what follows, we do not employ this condition. Equations (17) and (18) de-
termining the values of ∂Ex

 ⁄ ∂x, ∂Ey
 ⁄ ∂y, and ∂Ez

 ⁄ ∂z in the adjacent media 1 and 2 are actually a "single" condition
at the boundary. The special properties of the expression of the general law of conservation of electric charge at the
boundary imply that the components ∂Ey

 ⁄ ∂y and ∂Ez
 ⁄ ∂z are determined from conditions (25) and (26) that are derived

from the equality and continuity of the tangential components Ey and Ez at the boundary of the adjacent media.
Example. Electromagnetic phenomena occurring in the case of incidence of plane electromagnetic waves on

the interfaces of dissimilar media play an important role in engineering, since all the actual devices are bounded by
the surfaces and are nonuniform in space [9, p. 87]. Let us dwell on the simplest case of propagation of a plane
monochromatic wave through the boundary of two media for the one-dimensional case where the amplitude of Ey de-
pends only on x.

We consider the contact of an infinite plate of thickness h, which has constant electrophysical properties ε1,
µ1, and λ1, with a semiinfinite medium having properties ε2, µ2, and λ2. On the surface of the plate x = 0, there is
a source of a periodic boundary regime with a cyclic frequency ω (Fig. 1). In this case, the equation for the electric
field strength (8) in each of the media has the form

ε

c
2
 
∂2

Ey

∂t
2

 + µ0 λ 
∂Ey

∂t
 = 

1

µ
 







∂2
Ey

∂x
2







 ; (27)

here,

x = 0 :   Ey (0, t) = A exp (iωt)   and   x = ∞ :   Ey (∞, t) = 0 . (28)

At the boundary of contact x = h, the following two conditions must be satisfied:
(1) equality of the tangential components

Ey1 = Ey2 , (29)

(2) equality of the tangential projections of the rotation of the electric field

Fig. 1. Scheme of contact of the plate with the semiinfinite medium.
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1

µ1
 
∂Ey1

∂x
 = 

1

µ2
 
∂Ey2

∂x
 . (30)

Here it is taken that ∂Ex1
 ⁄ ∂y = 0 and ∂Ex2

 ⁄ ∂y = 0, since Ez = 0.
Let Ey = E

~
y(x) exp (iωt). We introduce the notation Ey(x) BE; then Eq. (27) will be represented as

∂2
E

∂x
2

 − k
2
E = 0 , (31)

k
2
 = − 

µω2ε
c

 + iωλ µ0 = − a + ib . (32)

The solution of (27)–(30) is sought in the form of a superposition of a traveling wave and a reflected wave:

E1 = C1 exp (k1x) + D1 exp (− k1x)   (in the plate) , (33)

E2 = C2 exp (k2x) + D2 exp (− k2x)   (in the semiinfinite medium) , (34)

The quantities E1 and E2 satisfy Eq. (31). From boundary conditions (28) we have

C1 + D1 = A , (35)

C2 = 0 , (36)

since E → 0 when x → ∞.
Conditions (29) and (30) on the contact can be reduced to the system of algebraic equations

C1 exp (k1h) + D1 exp (− k1h) = D2 exp (− k2h) , (37)

µ1
−1

 (C1 exp (k1h) − D1 exp (− k1h)) = − µ2
−1

k2D2 exp (− k2h) . (38)

Upon transformations, the expression for the constants has the final form

C1 = 
A exp (− k1h) (k1 µ1

−1
 − µ2

−1
k2 exp (− k2h))

k1 µ1
−1

 (exp (k1h) + exp (− k1h)) + µ2
−1

k2 exp (− k2h) (exp (k1h) − exp (− k1h))
 , (39)

D1 = A − C1 ,   C2 = 0 , (40)

D2 = A exp (k1h) 







k2 µ2
−1

 − µ2
−1

k2 exp (− k1h)

k1 µ1
−1

 (exp (k1h) + exp (− k1h)) + µ2
−1

k2 exp (− k2h) (exp (k1h) − exp (− k1h))
 +

+ 1 − 
exp (− 2k1h) (k1 µ1

−1
 − µ2

−1
k2 exp (− k1h))

k1 µ1
−1

 (exp (k1h) + exp (− k1h)) + µ2
−1

k2 exp (− k2h) (exp (k1h) − exp (− k1h))







 . (41)
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Condition (30) at the boundary of contact is new and it enables us to take into account the influence of the
magnetic properties of a substance.

In specifying the boundary conditions, the widest acceptance has been gained at present by the approximate
impedance conditions of Leontovich and Shchukin [9, p. 87]; these condition relate the tangential components of the
electromagnetic field at the interface of two media through introduction of the impedance z, Eτ = zHτ. It is emphasized
in [9, p. 97] that, generally speaking, z is a function of the process and it is not a constant; furthermore, z can have
a tensor integro-differential operator form. In [11, 12], the thickness of the transition layer in which the change in
electrophysical properties is a continuous function of the coordinate is artificially introduced to model layered media.
In this approach, solution of the problem is mainly determined by the form of a smoothing polynomial and the thick-
ness of the transition layer.

In computing k1 = %√ −a1 + ib1  = u1 + iv1 and k2 = %√ −a2 + ib2  = u2 + iv2, it must be borne in mind that the
sign of b determines selection of the signs of u and v according to the relation 2uv = b. When b > 0, u and v have
opposite signs; here

u
2
 = 

1
2

  a
2
 + √a2 + b2 

  ,

v
2
 = 

1
2

  − a
2
 + √a2 + b2 

  .

For media with relaxation we represent expression (22) in a more complex form [10]:

k
2
 = − 

ω2εε0 µ0µ

1 + ωτr
2  + i 








µµ0εε0τpω3

1 + ω2τr
2  + λω







 . (42)

In this relation, account is taken of the delay of dipoles and domains in the external electromagnetic field which is
attributed not only to the electrical phenomena of relaxation but also to the magnetic ones. In deriving (42), we em-
ployed material equations of the form [10]:

D (t) + τr 
dD (t)

dt
 = εε0E (t) ,

B (t) + τr 
dB (t)

dt
 = µµ0H (t) .

It was assumed that the relaxation times τr of the electric and magnetic fields coincide. This is not necessarily so for
magnetic materials. In what follows, we are planning to take account of the general case where the relaxation times of
the field differ.

The numerical investigation of propagation of a plane monochromatic wave through the boundary of two
media carried out for the one-dimensional case has shown that the character of change of the electric-field amplitude
along the x axis is determined by the difference of the contacting media in electrophysical properties.

The dimensionless amplitude of the electric field as a function of the penetration depth of the electromagnetic
wave (ω = 109) in a two-layer medium with allowance for the relaxation of the electric and magnetic fields is illus-
trated by the curves presented in Fig. 2. Medium 1 is a plate with a thickness of 0.1 m, and medium 2 is a semiin-
finite space. The electrophysical properties of the first medium were considered to be constant and equal to λ1 = 0,
ε1 = 15, µ1 = 1, and τr1 = 0.

Figure 2A shows the influence of the electrical conductivity of both media on the amplitude of the electric
field (the magnetic properties of the media were also varied). Figure 2B, conversely, plots the amplitude of the electric
field versus the relative permeability.

Analysis of the behavior of the curves presented in these figures shows that if the permeabilities of the adja-
cent media are equal, the curves characterizing the dimensionless amplitude of the electric field as a function of the
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penetration depth of the electromagnetic wave represent continuous smooth lines (Fig. 2A, a). In the case where
µ1 ≠ µ2 such curves have bends (Fig. 2A, b and c and Fig. 2B).

We note that the relaxation times can also exert a substantial influence on the propagation of the electric
wave (the data are not given).

Thus, to model electromagnetic phenomena in layered media when we have a spatial distribution of electric
charges and an electric double layer at the boundary of contact it is proposed that the equation of telegraphy (for the
vector of the electric field strength) and the law of conservation of electric charge be employed. In this case it is un-
necessary to specify the surface charge, the surface capacitance, or the Leontovich–Shchukin impedance condition,
which are not only characteristics of the properties of the surface but also a function of the process. At the boundary
of the adjacent media, we derive and substantiate the following conditions: equality of the normal components of the

total current, equality of the tangential projections of the rotation of the electric field 



1
µµ0

 rotτ E






 x=ξ

 = 0, the law

of conservation of electric charge, equality of the tangential components of the electric field and their derivatives in
the tangential direction, and equality of the derivatives of the normal components of the electric field in the direction
tangential to the interface of the adjacent media.

We have given the example of solution of the problem of propagation of a plane monochromatic wave for
two media with dissimilar electrophysical properties for the one-dimensional case. We have investigated numerically
the influence of the magnetic properties of a medium on the propagation of an electromagnetic wave with allowance
for relaxation.

The calculation results are in qualitative agreement with the experimental data.

Fig. 2. Dimensionless amplitude of the electric field vs. penetration depth of
the electromagnetic wave (ω = 109) in a two-layer medium (ε1 = 15, τr1 = 0,
µ1 = 1 and λ1 = 0; ε2 = 20 and τr2 = 10−10): A) λ2 = 10 (1), 100 (2), and
1000 (3); µ2 = 1 (a); µ2 = 10 (b); µ2 = 100 (c); B) µ2 = 10 (1), 100 (2), and
1000 (3); λ2 = 10 (a), 100 (b), and 1000 (c).
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The approach proposed enables one to construct for the first time the consistent physico-mathematical model
of propagation of electromagnetic waves in a layered medium and to compute the charge of an electric double layer
based on the equations of macroscopic phenomenological electrodynamics.

The authors express their thanks to R. Wojnar, Associate of the Institute of Fundamental Problems of Tech-
nology of the Polish Academy of Sciences, and to N. V. Pavlyukevich, Corresponding Member of the National Acad-
emy of Sciences of Belarus, for useful comments and interest in the work.

NOTATION

B, magnetic induction; D, electric displacement, C/m2; E, electric field strength, V/m; H, magnetic field
strength, A/m; Iq, charge-flux density, C/(m2⋅sec); i, surface current, A/m; j and h, densities of the surface currents in
the coordinates y and z respectively; q, charge; ρ, charge density, C/m3; σ, surface charge density, C/m2, ε, relative
permittivity; ε0, electric constant; λ, specific electrical conductivity; µ, relative permeability; µ0, magnetic constant; c,
electrodynamic constant; µr, permeability; τr, relaxation time of dipoles or domains; ω, cyclic frequency of the wave;
t, time; x, y, z, Cartesian coordinates; a and b, real and imaginary parts of the complex number. Subscripts: 1 and 2,
first and second medium, n and τ, normal and tangential directions to the discontinuity surface; x, normal component
of the vector; y and z, tangential components of the vector at the boundary of the adjacent media; r, relaxation.
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